
User Manual of VerifyRealRoots
A MATLAB package for computing verified real solutions

of polynomial systems of equations and inequalities

Zhengfeng Yang
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai 200062, China
zfyang@sei.ecnu.edu.cn; http: // faculty. ecnu. edu. cn/ yangzhengfeng

Lihong Zhi
Key Laboratory of Mathematics Mechanization,

Chinese Academy of Sciences,Beijing 100190, China
lzhi@mmrc.iss.ac.cn; http: // mmrc. iss. ac. cn/ ~ lzhi

1. Introduction

VerifyRealRoots is a Matlab package for computing verified real solutions of polynomial sys-
tems of equations and inequalities. Let f1, . . . , fm, g1, . . . , gs be polynomials in R[x1, . . . , xn],
and S ⊂ Rn be the semi-algebraic set defined by f1, . . . , fm, g1, . . . , gs:

S = {(a1, . . . , an) ∈ Rn : fi(a1, . . . , an) = 0, gj(a1, . . . , an) > 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ s}.

VerifyRealRoots aims for computing at least one verified real solution for the semi-algebraic
set S using hybrid symbolic and numeric methods.

The directory in which you install VerifyRealRoots contains three subdirectories:

• /src: the source code of VerifyRealRoots;

• /examples: some benchmark examples;

• /docs: user manual and license file.

If you have any questions, please send email to zfyang@sei.ecnu.edu.cn and
lzhi@mmrc.iss.ac.cn. Any comments or suggestions are greatly appreciated.

2. Configuration

2.1. System requirements

To install and run VerifyRealRoots, you need:

• MATLAB R2014b or later versions.

• gcc compiler

– Windows Platform: Microsoft Windows with Microsoft Windows SDK 7.1 or Mi-
crosoft Visual C++ 2013 Compiler (Microsoft Visual Studio 2013).

– Linux Platform: GNU C++ compiler gcc 4.4.x/4.5.x/4.6.x/4.7.x.

– Mac OS X Platform: Xcode 5.x/6.x.

2.2. Installation instruction

You need install required software packages listed below and run the script configure.m to
complete the configuration.

1. Download VerifyRealRoots.zip, and unpack it.

2. Download the required software packages for using VerifyRealRoots:

- Download GloptiPoly 3.8. Unpack the zip file, and move the folder gloptipoly3 to
./VerifyRealRoots/src.

1

- Download the correct version of HOM4PS-2.0 for your operating system and un-
pack it, and move the bin folder to ./VerifyRealRoots/src/homotopy aux and
merge it to the existing bin folder.

- The three software above could be downloaded automatically in configure.m. If
error happens while downloading automatically, it is necessary to do this manually.

3. Run configure.m to configure VerifyRealRoots

- Change the MATLAB current folder to VerifyRealRoots’ folder, or add its folder
to path, then type “configure” in Matlab Command Window.

- Type “testDemos” to check whether the installation of VerifyRealRoots is com-
plete.

3. Computing Verified Real Solutions of Polynomial Sys-

tems

Main steps to compute verified real solutions of polynomial systems:

1. input the polynomial systems defined by equations and inequalities;

2. select the solver and initialize the option;

3. call main function verifyrealroots and get verified real solutions.

We also provide the online computation for VerifyRealRoots. You may try it on our
website: http://www.verifyrealroots.com.

3.1. Polynomial systems

In VerifyRealRoots, at first we need define the variables, and then create the polynomial with
the declared variables. For instance, to input a polynomial f = x2 + y2, you need type

>> syms x y; % declare the variables
>> f=xˆ2+yˆ2; % input a polynomial

We input a polynomial system H = {F,G}, where F = [f1, . . . fm] contains polynomial
equations f1 = 0, . . . , fm = 0 and G = [g1, . . . , gs] contains polynomial inequalities g1 >
0, . . . , gs > 0. If F or G is empty, we set F = [] or G = [].

Example 1 Consider the following system
f1 = x1 + x2 − 1 = 0,
f2 = x3 + x4 − 1 = 0,
g1 = 2x3

1 − x2x3 + 4x4 − 1 > 0,
g2 = x2

1 + x2
2 + x2

3 − 1 > 0.

(1)

At first, we declare the variables x1, x2, x3, x4 by typing

2

>> syms x1 x2 x3 x4; % declare the variables

then construct the polynomial system by setting

>> f1 = x1 + x2 - 1; %input the polynomials
>> f2 = x3 + x4 - 1;
>> g1 = 2*x1ˆ3 - x2*x3 + 4*x4 - 1;
>> g2 = x1ˆ2 + x2ˆ2 + x3ˆ2 - 1;
>> F = [f1, f2]; % input the polynomial equations
>> G = [g1, g2]; % input the inequalities
>> H = {F, G}; % construct the polynomial system

3.2. Option selections

The parameters of the options of VerifyRealRoots are stored in a Matlab data type structure.
The structure is divided into fields which contain individual pieces of data. Two algorithms in
VerifyRealRoots are provided to compute the verified real solutions for the given polynomial
system. In the field option.solver, “Hom4ps” denotes the solver, which is based on the critical
point method and the homotopy continuation method; “MMCRSolver” denotes the solver,
which is based on the low-rank moment matrix completion method. After constructing a
polynomial system, we can select one solver between “Hom4ps“ and “MMCRSolver“.

We list all options in Appendix. The parameter of the options will be assigned as the
default value when it is unassigned.

For Example 1, we can type the following commands to set the options:

>> option.solver = 'MMCRSolver'; % select the solver
>> option.tol = 1e-5; % set the tolerance

3.3. Getting solutions

After constructing a polynomial system and initializing option, we call the main function
verifyrealroots by typing

>> [out, vars] = verifyrealroots(H, option); %call the main function

It returns the verified inclusions of real solutions and the order of the variables. For Exam-
ple 1, we have

>> out{:}
ans =

0.494621749849497 0.494621749849502
0.505378250150498 0.505378250150503
0.711471250340805 0.711471250340805
0.288528749659195 0.288528749659195

>> vars
vars =
[x1, x2, x3, x4]

3

The computed results can be stored in a specified file by calling the function output in
verifyrealroots. For example, the above results are stored in a file named “result“ by typing:

% write out and vars to a file named as 'result' in the directory './res'.
>> output('res/result', out, vars);

3.4. Verification with given approximate solutions

If approximate solutions are given, we can input the approximate real solutions and the order
of variables

>> xs={[0.49462; 0.50537; 0.71147; 0.28852],
[-3.15811; -1.11511; 2.51531; 0.17714]};
% input approximate solutions

>>vars=[x1,x2,x3,x4]; % define the order of variables

and use the command

>> out = verifyrealroots(H, xs, vars); % call the main function

to get

>> out{:} % list the verified solutions

ans =
0.494621749849497 0.494621749849502
0.505378250150498 0.505378250150503
0.711471250340805 0.711471250340805
0.288528749659195 0.288528749659195

3.5. Try Online

VerifyRealRoots also provides the online computation. One can input the polynomial system
and try verifyrealroot online via http://www.verifyrealroots.com. One need to edit the
MATLAB script in the editor, and then run VerifyRealRoots online by clicking Run button
on the upper-left corner of the browser. After the computation is complete, the output will
appear on the right side of the browser.

Comparing with the standard installation, the online computation of verifyrealroots is
much more time-consuming. To get better performance, we recommend the users to install
VerifyRealRoots on their computers.

Appendix

In this section, we present the options of two solvers: Hom4ps and MMCRSolver, see [1] [2]
for details.

4

Options Details

demand

• each component : is used for computing real solutions on each
connected component of the variety defined by adding all minors.

• roots existence (default): construct the extended polynomial
system by adding some minors.

projection Construct a zero-dimensional polynomial system by fixing as many
variables as possible. The default value is ‘false’.

tol The tolerance is selected to determine whether the complex root
computed by Hom4ps is real. The default value is 1e− 7.

Table 1: The options for Hom4ps

Options Details

order
The relaxation order. The default value is

max

(
max

1≤i≤m
(ddeg(fi)/2e), max

1≤j≤s
(ddeg(gi)/2e)

)
.

method

Two methods to construct a square polynomial system when the original system
is not square.

• nullspace(default): use null vector of the Jacobian matrix to construct an
extended regular system.

• fix : fix some variable(s) as anchor points to construct a square system.

schur type

Two methods for computing the Schur decomposition.

• full : call the standard function ‘schur‘ in MATLAB.

• partial (default): call the function ‘laneig‘ in PROPACK for partial Schur
decomposition.

projection Construct a zero-dimensional polynomial system by fixing as many variables as
possible. The default value is ‘false’.

continuation
Use Barzilai-Borwein continuation technique for solving the minimum-rank
Gram matrix completion problems. The choices are ‘0’ and ‘1’. The default
value is ‘1’.

eta The stepsize is a rational number less than 1. The default value is 1/4.

tol The tolerance for determining the numeric rank of the matrix.The default value
is 1e− 3.

Table 2: The options for MMCRSolver

References

[1] Ma, Y., and Zhi, L. Computing real solutions of polynomial systems via low-rank
moment matrix completion. In ISSAC (2012), ACM, pp. 249–256.

[2] Yang, Z., Zhi, L., and Zhu, Y. Verified error bounds for real solutions of positive-
dimensional polynomial systems. In Proceedings of the 38th International Symposium on
Symbolic and Algebraic Computation (New York, NY, USA, 2013), ISSAC ’13, ACM,
pp. 371–378.

5

